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[1] In many industrialized regions of the world, atmospherically deposited sulfur derived
from industrial, nonpoint air pollution sources reduces stream water quality and results in
acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water
acidity are an essential aid to managers who must identify acid-sensitive streams,
potentially affected biota, and create resource protection strategies. In this study, we
developed correlative models to predict the acid neutralizing capacity (ANC) of streams
across the southern Appalachian Mountain region, USA. Models were developed using
stream water chemistry data from 933 sampled locations and continuous maps of pertinent
environmental and climatic predictors. Environmental predictors were averaged across the
upslope contributing area for each sampled stream location and submitted to both statistical
and machine-learning regression models. Predictor variables represented key aspects of the
contributing geology, soils, climate, topography, and acidic deposition. To reduce model
error rates, we employed hurdle modeling to screen out well-buffered sites and predict
continuous ANC for the remainder of the stream network. Models predicted acid-sensitive
streams in forested watersheds with small contributing areas, siliceous lithologies, cool and
moist environments, low clay content soils, and moderate or higher dry sulfur deposition.
Our results confirmed findings from other studies and further identified several influential
climatic variables and variable interactions. Model predictions indicated that one quarter of
the total stream network was sensitive to additional sulfur inputs (i.e., ANC< 100 meq L�1),
while <10% displayed much lower ANC (<50 meq L�1). These methods may be readily
adapted in other regions to assess stream water quality and potential biotic sensitivity to
acidic inputs.
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1. Introduction

[2] Since the industrial revolution, industrially derived
atmospherically deposited sulfur (S) has acidified streams
across the eastern United States [United States Environ-
mental Protection Agency, 2009], Europe [Christophersen
et al., 1990; Hru�ska et al., 2002; Schöpp et al., 2003],
China [Galloway et al., 1987], southeast Asia, and other
industrialized regions [Galloway, 2001; Menz and Seip,

2004]. Within these areas, increased acidification has
depleted base cations from soils through sulfate (SO4

2�)
leaching and exchange of associated acidity with base cations
in the soil solution [Hendershot et al., 1991], mobilized inor-
ganic aluminum (Ali) to streams [Sullivan, 2000], and reduced
richness of fish and aquatic invertebrates [Guerold et al.,
2000; Rago and Wiener, 1986; T. J. Sullivan et al., 2007;
United States Environmental Protection Agency, 2009].

[3] Recent reductions in industrial emissions, particu-
larly in the United States and Europe, have reduced atmos-
pheric S, but lagged effects of prior deposition are still
apparent, particularly in geologically sensitive headwater
streams [Driscoll et al., 2003; Guerold et al., 2000; United
States Environmental Protection Agency, 2009]. Results
from recent eastern U.S. lake evaluations suggest that re-
covery from chronic exposure to atmospheric S may take
decades [Driscoll et al., 2003].

[4] Acid neutralizing capacity (ANC) is one measure of
stream water acid-base status, which is reasonably well cor-
related with biological health and species richness in acid-
sensitive systems [Lien et al., 1992; T. J. Sullivan et al.,
2007; United States Environmental Protection Agency,
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2009]. ANC is the sum of the concentrations of all major
base cations, minus concentrations of anionic sulfate
(SO4

2�), nitrate (NO3
�), and chloride (Cl�), reported in

meq L�1. As rates of acidic deposition increase in water-
sheds, especially those with shallow acid-sensitive soils,
surface water ANC generally decreases, but in proportion
to the natural resupply of base cations. Consequently, reba-
lancing long-term acid-base chemistry in acid-impacted
watersheds partially depends on reducing atmospheric S to
levels below the natural resupply of base cations [Sullivan,
2000]. Base cation resupply comes from soil mineral base
cation weathering (BCw) or exogenous inputs [Cosby et al.,
1985; Henriksen and Posch, 2001; McDonnell et al.,
2010]. The inherent capacity for a given watershed to
buffer against acidic inputs over the long term is therefore
related to the set of environmental conditions that influence
the amount and transport of base cations within the water-
shed [McDonnell et al., 2012; Sullivan et al., 2007].

[5] When monitoring stream water acid-base status,
ANC is often chosen over other metrics, such as pH, due to
its relative insensitivity to changes in concentrations of
CO2, aluminum reactions, and presence of organic acids
[Neal et al., 1999]. ANC is widely used in studies of re-
gional critical loads (CLs) [Clark et al., 2012; Duan et al.,
2000; Henriksen et al., 1995; United States Environmental
Protection Agency, 2009] because it is the predominant
chemical criterion used in the determination of CLs of acid-
ity. Various ANC thresholds are associated with biological
effects [United States Environmental Protection Agency,
2009]. Negative effects on macroinvertebrate and fish spe-
cies richness have been associated with ANC concentra-
tions between �50 and 100 meq L�1 [Cosby et al., 2006;
Sullivan et al., 2007], and more substantial effects are
observed at lower levels [Cosby et al., 2006; Sullivan
et al., 2007; United States Environmental Protection
Agency, 2009].

[6] Stream water ANC status is used in the calculation
of regional estimates of steady-state CLs to identify acid-
sensitive stream reaches (T. C. McDonnell et al., Critical
loads of sulfur deposition for aquatic resource protection in
the southern Appalachian Mountains, submitted to Water
Resources Research, 2013, hereinafter referred to as
McDonnell et al., submitted manuscript, 2013). The CL is a
quantitative estimate of the level of sustained S deposition
above which harmful ecosystem effects are likely [Nilsson
and Grennfelt, 1988]. Taken together, accurately estimated
ANC and identifying CL exceedances within individual
stream reaches can inform decisions about where best to
mitigate S deposition in aquatic habitats. ANC modeling
reported here was used in conjunction with BCw and CL
estimation for the study region (McDonnell et al., submit-
ted manuscript, 2013). All three estimates are used in a de-
cision support modeling framework to guide resource
management and policy decisions regarding S emissions
[Reynolds et al., 2012].

[7] The southern Appalachian Mountain region has a
long history of atmospheric S deposition and contains
threatened aquatic resources. The region exhibits complex
land use patterns superimposed on steep climatic and topo-
graphic gradients. As such, the diverse environmental set-
tings associated with this study area make it well suited to
ANC estimation.

[8] Developing regression models that explain the con-
tributions of biogeochemical and climatic variables to acid
neutralization can be difficult, particularly when modeling
these relations at large spatial scales. Difficulties arise from
inherent geographic variability in interactions among bio-
logical, geochemical, and climatic variables that can influ-
ence the susceptibility of a stream to S deposition [Levin,
1992; Turner, 1989]. These interactions can be nonlinear
and temporally nonstationary and therefore are poorly
addressed by traditional modeling frameworks [Elith et al.,
2008].

[9] Machine-learning techniques have recently been
introduced to mainstream ecological research in an effort to
address these factors. The main advantages of machine
learning over statistical regression techniques are that
resulting models (a) are robust against multicollinearity and
outliers; (b) include methods to reduce model overfitting;
(c) better identify important predictor variables, nonlinear
relationships, and complex interactions among predictors;
(d) are unaffected by data transformations; and (e) can
incorporate categorical, ordinal, or continuous numeric pre-
dictors [Elith et al., 2008; Franklin and Miller, 2009;
Olden et al., 2008]. A disadvantage of machine-learning
techniques is that most are nonparametric and do not pro-
duce model coefficients associated with traditional statisti-
cal models. Techniques include ensemble decision trees,
neural networks, support vector machines, and Bayesian
belief networks [Hastie et al., 2005].

[10] Here we employ machine learning to predict the
biogeochemical, climatic, vegetative, and acidic deposition
that are associated with low-ANC streams in the southern
Appalachian Mountain region. To accomplish this, we

[11] (1) gathered available stream water ANC data sets
within the region;

[12] (2) used available remotely sensed, surveyed, or
process-modeled climate, land cover, atmospheric deposi-
tion, geologic, edaphic, and topographic data;

[13] (3) compared traditional and machine-learning
approaches to select the best performing model; and

[14] (4) used hurdle modeling and data resampling to
address data imbalances.

[15] Our objectives were to develop and evaluate models
that best explained observed ANC, identify key explana-
tory variables, predict ANC for a continuous stream net-
work, and identify acid-sensitive streams and focal areas
for future sampling, monitoring, and potential remediation.

[16] This research advances the work of Sullivan et al.
[2007], who used logistic regression (logR) over a portion
of the same region. Here we compare machine-learning and
traditional model performance, address known imbalances
in the ANC data distribution by incorporating hurdle model-
ing, evaluate a much broader set of potential predictors, av-
erage predictor variables to the upslope-contributing area of
each stream water pour point across the study region, and
provide continuous estimates of ANC across a larger
region.

2. Methods

2.1. Study Area and Background

[17] The study area is the southern Appalachian Moun-
tain region (14.3 � 106 ha), which extends from northern
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Georgia to southern Pennsylvania, and from eastern Ken-
tucky to central Virginia (Figure 1). The region is primarily
composed of the Blue Ridge, Ridge and Valley, and Cen-
tral Appalachian ecoregions [Omernik, 1987]. The Blue
Ridge ecoregion is dominated by metamorphic and igneous
parent materials, whereas the Ridge and Valley and Central
Appalachian ecoregions are primarily sedimentary, with
northeast to southwest trending sandstone ridges and lime-
stone valleys (Figure 1). Elevations range from about 300
to 2000 m. The dominant land cover of the area consists of
oak, hickory, pine, spruce, and hemlock forests, inter-
spersed with crop and pasture lands, and urban areas.

2.2. ANC Data

[18] Water chemistry data were used to calculate stream
water ANC. Data were obtained from national and regional

databases, including the National Stream Survey, Environ-
mental Monitoring and Assessment Program, Virginia
Trout Stream Sensitivity Study (VTSSS), and others [see
also Sullivan et al., 2007; Sullivan et al., 2004]. A total of
933 sampled sites were included in this study.

[19] Water chemistry data were collected mainly during
the spring season between 1986 and 2009. Approximately
43% of data were collected during the 2000 VTSSS survey,
34% were collected between 1986 and 1996, and 23% were
from 2003 to 2009. All water chemistry samples were
georeferenced to a synthetic stream network created using
a hydrologically conditioned 30 m digital elevation model
(DEM) [United States Environmental Protection Agency
and United States Geological Survey, 2005] within a geo-
graphical information system.

[20] ANC was calculated as the sum of the charge bal-
ance of Ca2þ, Mg2þ, Kþ, Naþ, Cl�, NO3

�, NH4
þ, and

Figure 1. Distribution of water chemistry samples within Omernik [1987] ecoregions for the southern
Appalachian Mountain region.
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SO4
2�. Calculated ANC values across the study area

ranged from �109 to 3889 meq L�1 (mean¼ 188 6 414
(standard deviation, SD) meq L�1, median¼ 72), and the
data were right skewed (Figure 2). We address this later in
sections 2.6 and 2.7.

2.3. Predictor Variables

[21] An initial set of environmental predictors were cho-
sen to represent broad- to fine-scale climatic, lithologic,
geomorphic, topographic, edaphic, vegetation, land owner-
ship, and S deposition conditions that were potentially in-
fluential to ANC (see Table S1 for complete details). All
data layers were resampled to 30 m raster grids (Table S1),
and data values were averaged across the upslope contrib-
uting area of each 30 m grid cell, using the methods
described by McDonnell et al. [2012]. The equation for
upslope-averaging is as follows:

P ¼
Pi þ

XN

j
Pj

N þ 1
ð1Þ

where P is the upslope averaged value for the candidate

cell (Pi),
XN

j
Pj is the summation of all cell values

upslope of Pi, and N is the total number of upslope cells.
Upslope-averaging enabled us to attribute the average of
each predictor variable across the landscape draining into
each individual cell. Environmental data were obtained
from several sources, as described later.

[22] Eighteen climate variables representing 1961–1990
climate normals were taken from the 1 km resolution
Ameriflux data set developed by Hargrove and Hoffman
[2004] for the conterminous United States. Climate varia-
bles represented various aspects of the temperature, precip-
itation, and insolation regimes, each conditioned by local
growing and nongrowing seasons. Five soil, one topogra-
phy, two vegetation, and ten productivity variables were
also provided by this data set (Table S1).

[23] The National Land Cover Dataset [Homer et al.,
2007] was used to quantify the percent areal coverage of

major land cover types, including the cover of coniferous,
hardwood, and of all forest types combined. Two additional
classes were derived that combined mixed coniferous and
hardwood forest by weighted averaging. A landownership
variable was also included to represent the percentage of
catchment area in federal versus nonfederal ownership
[National Atlas of the United States, 2006]. Due to different
management histories on federal versus privately owned
lands in the eastern United States (more intensive logging
on nonfederal lands), this layer was intended to provide
proxy information on degree of past logging disturbance, a
known influence on ANC [Sullivan et al., 1999].

[24] Using a 30 m DEM, we derived three topographic
variables: a steady-state topographic wetness index (TWI)
[Wood et al., 1990], surface area ratio (SAR), and flow
accumulation (FAC). TWI was computed as the log of the
catchment size divided by the catchment slope (radians), to
represent the propensity of each grid cell to accumulate
water [Moore et al., 1993]. SAR measured terrain rough-
ness as the ratio of sloped to flat surface area of a grid cell
[Jenness, 2004]. FAC represented the total area contribut-
ing overland flow to a grid cell [Jenson and Domingue,
1988]. These variables represented watershed characteris-
tics and were not upslope averaged.

[25] Additional soils data were obtained from the Soil
Survey Geographic [NRCS Soil Survey Staff, 2010a] and
the U.S. General Soil Map [NRCS Soil Survey Staff, 2010b]
databases. Soil variables included percent clay, soil pH,
and soil depth. A broad-scale lithology classification pro-
vided by Sullivan et al. [2007] was used to capture the per-
cent composition of parent materials across the study area.
Classes included siliceous, argillic, felsic, mafic, and car-
bonate substrates. Mapped surface lithologies were compo-
sites from State geologic maps [United States Geological
Survey, 2005a, 2005b].

[26] Total wet and dry S deposition were calculated
based on 3 year averages of the NADP (National Atmos-
pheric Deposition Program) [Grimm and Lynch, 2004]
interpolated wet (375 m resolution) and CMAQ (Commu-
nity Multiscale Air Quality) [Byun and Schere, 2006] mod-
eled dry deposition (12 km resolution), centered on the
2002 weather year.

[27] The initial set of predictors included 57 variables ;
only those with Pearson’s correlation scores <0.7 were
retained leading to a modeling set of 33 variables. Among
correlated variables, those with the highest Pearson’s corre-
lation with ANC were retained. Other correlation cutoff
values were considered and evaluated, but none improved
the final models.

2.4. Model Development

[28] To identify best modeling approaches, we compared
traditional regression and machine-learning techniques
using a common set of performance metrics (described
later). Statistical models included linear models (LMs) and
logR, random forest (RF), and boosted classification and
regression trees (BCT and BRT).

[29] Exploratory ecological analyses like this one are
opportunistic, involving combined data sets, which can yield
imbalanced sampling designs and skewed data distributions
[Barandela et al., 2003; Chawla et al., 2002]. While most
statistical models, including advanced machine-learning

Figure 2. A plot of the kernel density function estimated
for the 933 sampled ANC values across the southern Appa-
lachian Mountain region. Gray vertical lines indicate mini-
mum, first quantile, median, second quantile, and maximum
ANC values.
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algorithms [Elith and Leathwick, 2009; Elith et al., 2008],
assume balanced data designs, some produce robust predic-
tions with moderate imbalances but few perform well with
large imbalances. We explored a variety of techniques to
ameliorate the influence of imbalanced data in our study and
increase the overall accuracy of model predictions.

[30] We began by predicting ANC as a continuous
response using LM, RF, and BRT models. Next, we used
two-stage hurdle modeling, in combination with the regres-
sion techniques, to screen out sites with a high probability
of being well buffered, and then predicted a continuous
ANC value for the remainder. Finally, we tested two data
resampling techniques that imposed a balanced data distri-
bution within the hurdle modeling framework.

2.5. Machine-Learning Algorithms

[31] We compared the performance of BCT, BRT (gbm
package in R v2.12.2) [Ridgeway, 2006], and RF (random-
Forest package in R v2.12.2) [Liaw and Wiener, 2002]
models against LM and logR models (stats package in R)
[R Development Core Team, 2011] to determine the best
approach, considering the available data and the prediction
goals. Models were evaluated using a 75%/25% training/
testing set, over 50 iterations to ensure accuracy of pre-
dicted model error rates. Model error metrics are discussed
later in section 2.6.

[32] Machine-learning algorithms are relatively new to
ecological research [Hastie et al., 2005; Olden et al.,
2008]. Many are data driven, meaning that models do not
produce a parameterized statistical model but identify pat-
terns in the data with few assumptions regarding the under-
lying probability distribution of the training data [Breiman,
2001b]. Accordingly, the main advantage of machine-
learning algorithms is their potential to model complex and
nonlinear relationships without having to satisfy the
assumptions associated with parametric models (e.g., nor-
mally distributed residuals and linear relationships among
dependent and independent variables). This is accom-
plished in a variety of ways depending on the type of learn-
ing used [Franklin and Miller, 2009; Gahegan, 2003;
Olden et al., 2008].

[33] Boosted and RF methods represent ensemble ver-
sions of traditional classification and regression tree
(CART) analysis that output a majority vote or mean value
from a series of trees [De’ath and Fabricius, 2000; Elith
et al., 2008; Prasad et al., 2006]. In lieu of a parameterized
statistical model, CART splits the data into successively
smaller and more homogenous groups until some stopping
criterion is met. This is done by iteratively sorting each pre-
dictor variable and then splitting the data into two mutually
exclusive groups at each iteration. This is repeated for ev-
ery value of the predictor and for all predictors individu-
ally. The predictor and splitting value are chosen for each
split that minimizes the within-group heterogeneity of the
response variable [Breiman, 1984; De’ath and Fabricius,
2000].

[34] RF and boosted methods build tens to thousands of
CART trees; predictions made from the models are based
on a majority vote (classification) or averaged value
(regression). Boosting works by using the entire set of pre-
dictors and data to build each individual tree, and the algo-
rithm is sequential, using information about model

residuals of past trees to guide development of subsequent
trees [De’ath, 2007; Elith et al., 2008]. RF models use a
bagging algorithm, in which individual trees are built using
random samples of the predictors and of the data, each in a
predefined proportion. Model performance is assessed
using an independent test set, n-fold cross validation (BCT,
BRT), or out-of-bag estimates (RF). Out-of-bag samples
refer to the training data left while building individual
regression trees. Mean out-of-bag error rates are estimated
by models for each out-of-bag sample by entering them
into the tree they were omitted from, calculating error esti-
mates for each tree, and averaging error estimates across all
trees.

[35] Variable importance measures are also calculated
by these algorithms. For BRT/BCT, variable importance is
based on the number of times the variable was chosen as a
predictor in the individual trees and weighted by the devi-
ance the variable explained across all trees [Elith et al.,
2008]. For RF, variable importance is calculated as the dif-
ference between the error rate of an individual tree and the
error rate of the tree calculated using randomly assigned
values for the specific predictor, averaged across all trees in
the RF model [Breiman, 2001a].

2.6. Hurdle Modeling

[36] Initially, we found that single regression models
exhibited high error rates, particularly for streams with
ANC values >150 meq L�1. A two-stage hurdle model
was used to minimize RMSE of predicted ANC values
(Figure 3). In a first stage, a binomial model (e.g., logR,
BCT, and RF) predicted the probability that ANC values
for any 30 m grid cell were below a specified threshold
(e.g., ANC< 200 meq L�1). If a cell exhibited a high proba-
bility (e.g., probability> 0.5) of a low ANC value, that cell
was entered into a second regression model (e.g., LM,
BRT, or RF), where continuous ANC values were pre-
dicted. If a cell exhibited a low probability (e.g., <0.5) of a
low ANC value, it was considered well buffered, assigned
an arbitrarily high ANC value, and not considered further
by the continuous model. Tested ANC threshold values
were 150, 200, 250, and 300 meq L�1; tested probability
cutoff values were (0.4, 0.5, 0.6, and 0.7).

[37] Threshold and continuous models were trained sepa-
rately to identify the optimal statistical model, predictors,
and parameters. Models were constructed using 3, 5, 7, 10,
15, 20, 25, and 33 of the most influential predictors. Per-
formance was evaluated for each of these models to optimize
model parsimony and prediction accuracy. Performance
metrics were calculated for threshold and continuous models
using a random 25% draw on the data set. Threshold models
were compared using misclassification rate, � statistic
[Maclure and Willet, 1987], G mean, and area under the re-
ceiver operating curve (AUC) [He and Garcia, 2009]. Con-
tinuous models were compared using model RMSE (lower
numbers indicate higher prediction accuracy) and coefficient
of determination (R2).

[38] Within the hurdle model, data resampling techni-
ques were used to help reduce the influence of imbalanced
data on model performance. These included both (1) ran-
domly oversampling the ‘‘high-ANC’’ stream sample sites
(those with values greater than the specified threshold, see
this section above) until the sample number equaled that of
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the low-ANC sites, and (2) randomly undersampling the
low-ANC sites until the sample sizes were equal.

2.7. Validating the Complete Hurdle Model

[39] Once both the threshold and continuous models
were trained and the optimal models identified, the com-
plete hurdle model (thresholdþ continuous models) was
trained and evaluated using a randomly drawn training set
consisting of 75% of the sampled water chemistry sites.
During model training, three parameters were adjusted to
optimize hurdle model parameterization: the threshold
ANC value (150, 200, 250, or 300 meq L�1), the probability
cutoff value (0.4, 0.5, 0.6, or 0.7), and the data resampling
technique (no resample, oversample high ANC, undersam-
ple low ANC), resulting in 48 unique model parameteriza-
tions. All combinations of these parameterizations were run
50 times each, using unique random draws on the data to
create the training and testing sets, and model statistics
were averaged to identify optimal hurdle model parameter-
ization. All model parameterizations were compared by
plotting mean (6SD) RMSEs for the continuous models
against mean (6SD) false-positive rates for the threshold
models. The false-positive rate, as opposed to overall
model error rate, was used to minimize instances in which
a truly low-ANC site was erroneously predicted as high
ANC. The ‘‘best’’ model parameterization exhibited the
lowest values for the two error rates.

2.8. Spatial Autocorrelation

[40] Spatial autocorrelation in the final ANC model was
assessed with a Moran’s I correlogram on model residuals
using the spdep package within R [Bivand et al., 2011].

This statistic varies between �1 (perfect negative correla-
tion) and 1 (perfect positive correlation); values approach-
ing zero indicate complete spatial randomness. The
correlogram also displays the results of null hypothesis test-
ing at varying geographic distances.

3. Results

3.1. LM Regression and Machine Learning

[41] We initially predicted continuous surfaces of ANC
using RF, BRT, and LM. RMSE of predictions (based on
independent test sets withheld from model training over 50
iterations) were 7%–14% lower for machine-learning algo-
rithms (RF: 258.1 6 36.2, BRT: 277.2 6 38.7) compared
with LM regression (298.3 6 37.4), but error rates were rel-
atively high for all models in relation to the scale of the
ANC values. Error rates for all models were highest for
sites with ANC >150 meq L�1 (Figure 4).

3.2. Hurdle Modeling Training

3.2.1. Threshold and Continuous Model Selection
[42] Compared to the initial continuous models, hurdle

models reduced overall RMSE rates and identified key pre-
dictors contributing to low ANC. Within the hurdle model-
ing framework, RF models displayed the lowest error rates
of all tested (Figure 5). Across all models, performance
declined when fewer than 10 predictors were entered into
the model (Figure 5).

[43] RF threshold models exhibited AUC scores >0.9, �
scores >0.7, and error rates <8% when models included
between 7 and 20 predictors (Figure 5). Over this range of
predictors, LM exhibited �10% error rates, AUC scores

Figure 3. Conceptual diagram of the hurdle modeling framework for predicting ANC values in the
southern Appalachian Mountain region.
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<0.9, and � scores �0.5. Similar results were found for the
continuous models where R2 for RF models were �0.5
compared to 0.40–0.48 for LM, and RMSE rates were con-
sistently high for RF.

[44] The best final hurdle model included RF threshold
and continuous models. Both models included 10 predic-
tors and were derived from 1000 individual regression trees
(ntree parameter) with a bagging fraction of 30% (mtry
parameter).
3.2.2. Variable Importance
3.2.2.1. Threshold Model

[45] From the threshold model, low ANC occurred in
small forested catchment areas with noncarbonate lithology,
cool and moist climates, with relatively low soil pH and
clay levels (Table 1 and Figure 6). With few exceptions,
predictors influenced ANC in a nonlinear manner, and non-
linearities occurred at the ends of the response curves. For
example, the probability of a low value of ANC increased
nonlinearly with average percent forested cover, but the ma-
jority of samples (Figure 6, sixth panel, hash marks on the x
axis) had between 90% and 100% forested cover.

Figure 4. Predicted versus observed ANC values resulting
from (a) the RF-only model (i.e., single RF regression model)
and (b) the final hurdle model. Unlike Figure 6, where models
were developed using a testing/training set, models here were
trained and predicted using all 933 sample sites. Note the dif-
ference in x- and y-axis scaling between Figures 4a and 4b.

Figure 5. Validation results for (top two rows) threshold and (lower row) continuous models of the
hurdle modeling framework. Comparisons are shown for the ordinary least squares (LM; continuous
model only), BRT, and RF models. Abbreviations : AUC, area under the receiver operator curve;
RMSE, root-mean-square error. Each unique combination of models was run 15 times to obtain esti-
mates of variability due to the collection of training data unique to each run. Error bars represent the
6SD of the error estimates. Variables included in each model were chosen using the top predictor varia-
bles based on the average variable importance measures from the BRT/BCT and RF models. Error rate,
AUC, �, G mean, and R2 statistics are unitless, and RMSE has units of meq L�1.
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[46] Significant interactions among variables were iden-
tified by the RF model for percent calcareous, percent pub-
lic land, the maximum number of very wet days (i.e., vapor
pressure deficit <1000 Pa, VWDAYMAX), and maximum
number of continuous very dry days (i.e., VPD >750 Pa;
VDCONTDAY; Figure S1). Areas with <10% calcareous
lithology in fairly moist environments had the highest prob-
abilities of being low ANC; probabilities decreased most
with slight increase in calcareous lithology and in the driest
environments. Other important interactions included the
amount of catchment area in public lands, and the highest
probabilities of low ANC occurred on public land and in
moist environments. However, the interaction between
public lands and carbonaceous lithology suggested that
probabilities were highest outside of public lands and on
noncalcareous lithology. Slight increases in public lands
reduced the probability of low ANC, but probabilities
increased slightly with increased amounts of public land;
increases in calcareous lithology reduced the probability of
low ANC only for catchments with negligible amounts of
public land.
3.2.2.2. Continuous Model

[47] From the continuous model, low ANC occurred in
areas with siliceous lithologies, a relatively moist, cool,
and short growing season, in conditions with low soil pH
and clay levels, and in small, forested catchment areas (Ta-
ble 1 and Figure 7). Like the threshold model, most varia-
bles had nonlinear response functions, and nonlinearities
generally occurred at the extremes of the response curves.

[48] Important interactions were identified for the amount
of siliceous lithology, precipitation, temperature, forest
cover, and topography variables (Figure S2). TWI had a
highly nonlinear influence on ANC levels (Figure 7), but
when interacting with the level of siliceous lithology this
was less apparent and ANC appeared most influenced by li-
thology. Interactions among climate variables clearly
showed that low ANC was associated with low temperatures

and high precipitation. Catchments with warm climates
appeared to reduce the influence of siliceous lithology on
ANC; catchments with 80% of their area in siliceous lithol-
ogy and >10 days with temperatures >32.2�C had a pre-
dicted ANC of �140 meq L�1 compared to only �50
meq L�1 in the coldest environments. The amount of for-
ested area had a similar influence, and catchments with
<90% forest cover and <80% siliceous lithology appeared
well buffered.

[49] To better understand differences in important driv-
ers of ANC at high compared to low elevations, we strati-
fied low (<500 m, first quartile) from high-elevation (>850
m, third quartile) sites and developed continuous RF mod-
els for observations with ANC �300 meq L�1 separately for
each elevation setting. Drivers of low ANC for the low-
elevation model were similar to those of the full model
(Figure S3), but in the high-elevation model, low ANC was
found in areas with high coniferous and low deciduous
cover (Figure S4). Wet S deposition was also a leading pre-
dictor in the high-elevation model, but not in the low-
elevation model or hurdle model, and ANC was lowest for
intermediate levels of deposition.
3.2.3. Hurdle Model Performance

[50] Based on model performance results presented in
Figure 8, the final model parameterization included RF
threshold and continuous models, imbalanced data (no
resampling), and a 0.7 probability cutoff, with a 300
meq L�1 ANC threshold (model 46, Figure 8, Table S2).
This model displayed a 5.6% omission error rate, 9.5%
overall error rate of classification, and an RMSE of 107.5
meq L�1 based on 50 model iterations. Overall, hurdle mod-
eling reduced model RMSE by 140%–177%. Model RMSE
was lowest for stream segments with ANC <150 meq L�1

(Figure 4); but this model consistently underpredicted
ANC for values >150 meq L�1. Underprediction was likely
associated with few sampled water chemistry data sites in
streams with ANC >150 meq L�1. When only sites with

Table 1. Predictor Variables Included in the (Left) Threshold Model and (Right) Continuous Model Within the Hurdle Modeling
Frameworka

Threshold Model Variables Short Name
Relative

Importance Continuous Model Variables Short Name
Relative

Importance

Percent carbonate lithology LITH_CAR 20.23 Percent siliceous lithology LITH_SIL 18.64
Soil pH SOIL_PH 12.20 Mean penultimate maximum days

without precipitation while �10�C
NPDAYMAX 11.98

Mean penultimate maximum days
VPD <1000 Pa while �10�C

VWDAYMAX 12.08 Mean number of GS days above
32.2�C

AB90GROW 11.51

Mean 95% of maximum GS
temperature difference

DIFF95GR 10.68 Mean penultimate maximum days
vapor pressure deficit <1000 Pa
while �10�C

VWDAYMAX 9.24

Percent land in public ownership PUBLIC 10.60 Dry sulfur deposition S_DRY 9.13
Percent forest cover FOREST 8.86 Percent forest cover FOREST 8.79
Percent argillic lithology LITH_ARG 7.14 Percent soil clay SOIL_CLAY 8.42
Mean precipitation sum during the

local non-GS
PRECIPNG 6.83 Soil pH SOIL_PH 7.99

Mean penultimate maximum
consecutive days VPD >750 Pa
while �10�C

VDCONTDAY 6.17 Topographic wetness index TWI 7.38

Mean non-GS gross primary
productivity

GPPNG 5.20 Flow accumulation FAC 6.92

aGS, growing season. Relative importance for a single predictor variable is based on the mean increase in mean-square error (regression) or model ac-
curacy (classification) for each decision tree when the values of the predictor variable are randomized during model calibration. The values have been
standardized to sum to 100%. See Table S1 for description of the predictor variables.
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ANC <150 meq L�1 were included in the model, RMSE
was 36.6 meq L�1.

[51] The majority of the RMSE for well-buffered sites
was related to threshold model misclassifications of high-
ANC sites as low; a behavior consistent across all models
tested. When misclassifications were removed from the
error analysis, the resultant RMSE was 49.4 meq L�1 for
the full model. Results of the spatial autocorrelation analy-
sis indicated that spatial autocorrelation among model
residuals was negligible (Table 2).
3.2.4. ANC Model Predictions

[52] Stream water chemistry often associated with bio-
logical harm (e.g., ANC< 100 meq L�1) occurred through-
out the study area (Figure 9). Approximately 8% of the
stream network displayed ANC values <50 meq L�1, and
24.5% with values <100 meq L�1 (Figure 10). Lithologic
patterns clearly influenced ANC predictions, with high-
ANC areas occurring mainly in limestone valley bottoms,
and low ANC occurring on siliceous bedrock.

[53] We compared predictions from RF hurdle models to
those from a linear regression model (LM). Differences in

the patterns of predictions made by the LM and RF hurdle
model were apparent. The LM predicted >84% of the
stream network (as measured by length) had ANC values
>150 meq L�1, compared to only 58% for the RF hurdle
model (Figure 10). The RF model predicted 35% of streams
had ANC between values 50 and 150 meq L�1 compared to
only 8.9% predicted by LM (Figure 10). For the most
acidic class (i.e., ANC< 0 meq L�1), the LM predicted a
slightly higher percentage of streams (3.9% LM versus
0.9% RF hurdle).

[54] LM tended to predict higher ANC levels particularly
in the central Appalachian region (Figures S5 and S6).
However, in the southern Blue Ridge and in pockets of
eastern and central West Virginia, where the RF hurdle
model predicted low ANC rates (e.g., ANC< 50 meq L�1),
the LM generally predicted very low ANC rates (Figures
S5 and S6). Low ANC predictions from the LM were fairly
isolated geographically and generally corresponded to areas
of highest sampling intensity, potentially indicating that the
LM had poor predictive ability outside the limits of the
training data.

Figure 6. Response curves showing relations between the predicted ANC and individual predictor var-
iables included in the threshold model within the hurdle modeling framework. Black tick marks on the x
axis indicate decile classes for the predictors. The y axis indicates the relative effect of the predictor on
ANC on a logit scale. In general, higher y-axis values indicate a higher probability of predicting a low
ANC value. See Table S1 for a description of predictors.
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[55] Spatial patterning of RF model uncertainty was also
apparent across the study area. Model uncertainty was
expressed as the SD of continuous predictions made among
the ensemble of individual trees comprising the RF model.
As might be expected, model uncertainty was highest in the
western portion of the study domain where few samples
occurred (Figure 9) and lowest in the areas with the most
samples.

4. Discussion

4.1. Modeling Low ANC

[56] Biogeochemical and climatic influences on ANC
almost certainly involve many interactions among environ-
mental and climatic processes that together influence the
ultimate susceptibility of a stream to the acidifying effects of
S deposition. Some of these factors are as yet unknown, and
others are known, but complex, nonlinear, nonstationary
over space and time, and difficult to measure [Driscoll et al.,
1987; United States Environmental Protection Agency,
2009]. Known processes include (1) nutrient uptake by

plants, transport of litter fall, and delivery to neighboring
streams; (2) mobilization of Al3þ ; (3) erosion and sedimen-
tation of cations and anions from upslope catchments; (4)
deposition of S from exogenous sources; and (5) physical
and chemical weathering of parent materials proximal and
distal to the stream channel [Christophersen and Neal,
1990; Driscoll et al., 1987; Johnson and Host, 2010; Reuss
et al., 1987; Sullivan, 2000]. Modeling the susceptibility of
aquatic systems to acidic deposition at a regional scale
requires an understanding of these processes, access to
adequately resolved data layers that accurately portray the
complexity of environmental conditions, and reliable statisti-
cal modeling.

[57] Our aim was to predict how integrated biological,
geological, chemical, and climatic processes within catch-
ments can be used to predict stream water chemistry, which
has linear flow properties that may concentrate or dilute
local buffering capacity within stream networks, and which
result in a unique correlation structure among observed
responses and the environments driving the response.
Results from this study indicated that predictions of ANC

Figure 7. Response curves showing relations between the predicted ANC and individual predictor var-
iables included in the continuous model within the hurdle modeling framework. Black tick marks on x
axis indicate decile classes for the predictors. The y axis indicates the relative effect of the predictors on
ANC. In general, lower y-axis values indicate lower ANC values. Note that the majority of climate varia-
bles have been multiplied by a constant, which had no effect on predictions or model performance. See
Table S1 for a description of the predictor variables.
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within a region can be made using a combination of
remotely sensed, spatially explicit environmental data, a
representative sample of water chemistry across the region,
and a modeling framework appropriate for the analysis.

[58] We addressed several aspects of the environmental
and stream water chemistry during the modeling process
including the spatial scale of the environmental predictors,
the timespan over which water chemistry was sampled, and
the spatial distribution of water sample sites.

[59] Stream water chemistry is governed by biological
and physical processes that are both endogenous and exog-
enous to the contributing watersheds [Sullivan et al., 2007].
Water chemistry may be sampled at points along streams,
but the environmental and edaphic influences on that chem-
istry must be related to the contributing space assignable to
those points [Johnson and Host, 2010; Steel et al., 2010].
We accounted for this by using an upslope-averaging tech-
nique [McDonnell et al., 2012] that generated values for
predictor variables that reflected conditions over the con-
tributing area to each point along the stream network. Point

estimates of the biogeoclimatic setting at the location of
water chemistry sample points would not adequately repre-
sent catchment level influences on water chemistry.

[60] The water chemistry data used in this study were
obtained from a series of sampling efforts undertaken inter-
mittently over a span of years (1986–2009). These data
were used because they were readily available, sampled a
fairly large spatial extent, were collected at fairly high den-
sity, and used a consistent method for calculating stream
water acid-base status. All sample data used for modeling
were collected during spring flow. As such, the model rep-
resents a description of the environment expected to influ-
ence spring season ANC concentrations, which are often
the lowest that occur in these streams [Herlihy et al., 1993].
Although S deposition declined substantially between 1986
and 2009, stream water ANC has shown little recovery,
mainly because of base cation depletion and continued S
adsorption on soils [Sullivan et al., 2011, 2008, 2004]. As a
result, we expect that data collected over a period of two dec-
ades generally reflect ambient stream acid-base chemistry.

[61] The lack of an a priori sampling design necessitated
an assessment of potential sampling bias. The effects of
data resampling on model prediction were mixed. Models
that undersampled low-ANC sites (the majority sample)
reduced RMSE but increased threshold model error rates.
Models that oversampled high-ANC sites (the minority
sample) produced negligible differences in model perform-
ance (Figure 8). Hence, rebalancing the sample was
unnecessary, and RF models performed reasonably well,
even with unbalanced sampling. Our results suggest that
the multivariate signature of low ANC was unique enough
to be readily detected against the background noise of other
ANC levels. Moreover, the RF and boosted models consis-
tently outperformed traditional regression approaches, and
two-stage hurdle modeling adequately minimized effects of
sampling bias on predicted ANC.

[62] Comparison of mean RMSE values for RF models
with and without hurdle modeling showed that the hurdle
model provided a more than twofold decrease in model
RMSE (258.1, RF-only, and 107.5, hurdle model). The
RMSE for ANC predictions <150 meq L�1 was 36.6 meq
L�1. This observation is key: we can accept higher error
rates in predictions of high ANC but require more accurate
predictions where ANC values are within the range of
known ecological degradation. Model performance was
substantially improved for the ANC conditions that are
most biologically relevant (�100 meq L�1).

[63] A major aim of ecological models is often to predict
various phenomena or responses over large geographic
areas. When models produce sufficiently accurate predic-
tions, they provide valuable insight into pattern and process
interactions, and variability of those interactions. Our
model allowed us to (1) identify areas of potential concern
for ecological remediation and management ; (2) identify
discrete areas where exogenous factors such as the broad-
scale climatic setting or large areas of heavy acidic S depo-
sition may trump local factors such as topography or soils
(e.g., the western portion of the region where ANC predic-
tions were low despite deeply dissected topography; pre-
sumably due to precipitation and S deposition patterns) ; (3)
identify areas where spatial clustering of environmental
degradation is predicted; and (4) locate areas of high

Figure 8. Scatterplot of the performance of 48 RF contin-
uous models varying by combination of data resampling
method (3), ANC threshold (4), and probability threshold
(4). Validation statistics are based on predictions to a ran-
domly drawn 25% subset of the data. A complete list of
model results is included in Table S2. Model number 46,
which showed the lowest RMSE and percent misclassified,
was used as the final model.

Table 2. Results From a Moran’s I Correlogram on Model Resid-
uals From the Hurdle Modela

Lag Estimate Expected Variance SD p

1 �0.001 �0.001 0.000 �0.014 0.989
2 0.004 �0.001 0.000 0.815 0.415
3 �0.007 �0.001 0.000 �1.058 0.290
4 �0.002 �0.001 0.000 �0.130 0.897
5 20.016 20.001 0.000 22.116 0.034
6 �0.001 �0.001 0.000 0.099 0.921

aValues represented in bold indicate significant autocorrelation.
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uncertainty, which may indicate inadequate sampling or
variable interactions among the predictors.

[64] Knowledge of the uncertainty in model predictions
is essential to evaluating model performance across geo-
graphic areas. Where model uncertainty is high, there may
be deficiencies in sampling, unique environments not cap-
tured by the training data, lack of phenomenological under-
standing, or errors in model parameterization. Model
validation results indicated that higher model uncertainty
occurred in areas where observed ANC values were
between 100 and 300 meq L�1; mapped SD values (Figure
9) confirmed this observation. These areas would benefit
from additional sampling and monitoring.

[65] Predictions from our model indicate that streams
with ANC <100 meq L�1 make up approximately one quar-
ter of the total stream length in the study area. ANC levels
<100 meq L�1 are associated with potential reductions in
fish and macroinvertebrate taxonomic richness [Cosby et al.,
2006]. Approximately 10% of the total stream length in the
study area was predicted to exhibit ANC <50 meq L�1.
Streams with ANC <50 meq L�1 are sensitive to episodic
acidification, and fish species richness is greatly reduced
[Schindler, 1988]. Low-ANC streams were generally located
in the mountainous regions of the Central Appalachian and
Blue Ridge Mountain provinces and in the central Ridge and

Figure 9. (left) ANC predictions from the best hurdle model, number 46 (see also Figure 6) and (right)
the SD of predictions made by the continuous model within the final hurdle model. SDs were calculated
from the predictions made from the ensemble of 1000 individual regression trees that made up the con-
tinuous RF model. Areas shown in white (filtered out by the threshold model) were predicted to exhibit
ANC values >300 meq L�1 and were not submitted to the continuous model).

Figure 10. Histogram of the percentage of 30 m stream
network grid cells predicted to be within seven ANC (meq
L�1) classes. Dark shaded bars represent the predictions
made from the linear regression model, and the lighter bars
are predictions made from the RF hurdle model.

POVAK ET AL.: MACHINE LEARNING TO PREDICT STREAM ACIDITY

12



Valley Province (Figure 9). These areas are characterized by
rugged topography, relatively steep temperature and precipi-
tation gradients, high percentage of forest cover, and a vari-
ety of geologic parent materials.

[66] In lieu of using a statistical modeling approach, pre-
vious estimates of regional stream water ANC in our study
area have been made using stratified random sampling
designed to evaluate the proportion of surveyed streams
contained within specified ANC classes [Herlihy et al.,
1993]. Estimates from these surveys generally corroborate
our findings when individual ecoregions are assessed,
although direct comparison is not possible. The authors
concluded that about 13%–25% of the sample streams dis-
played ANC values <50 meq L�1; our area prediction was
lower (<10%).

4.2. Endogenous and Exogenous Drivers of Stream
Water Acidity

[67] Results from the ANC modeling suggested low
ANC of streams in the southern Appalachian Mountain
region derived from lithologies, land-surface forms, tem-
perature and precipitation regimes, exogenous S deposition,
and endogenous patterns of physiognomies, soils, and top-
ographies within catchments.

[68] Streams situated on siliceous lithologies had rela-
tively low ANC, and this variable was the strongest predic-
tor in the continuous model. Other studies have also found
strong empirical relationships between lithology and stream
water ANC [Herlihy et al., 1993; Puckett and Bricker,
1992; Sullivan et al., 2007]. Soils created from siliceous
materials tend to be shallow, acidic [Krug and Frink,
1983], and generally exhibit low productivity, conductivity,
and BCw [Herlihy et al., 1993]. Despite the known impor-
tance of lithology on governing stream water quality and
other ecological processes, regionwide data layers describ-
ing mineralogy [NRCS Soil Survey Staff, 2010a] are of
inconsistent quality and resolution [Sullivan et al., 2007].
For instance, areas of West Virginia and Georgia delineate
mineralogy at different resolutions, which likely contrib-
utes to reduced model performance in these areas (Figure
9). Because lithology and soil characteristics were impor-
tant predictors in both the threshold and continuous models
(Table 1), we suspect that improved quality, resolution, and
consistency in soil and geologic data would improve model
prediction and spatial accuracy.

[69] Low ANC was also associated with a high percent-
age of forest cover (Figures 6 and 7). Sullivan et al. [2007]
and Herlihy et al. [1998] found a similar relationship
between low ANC and high forest cover for streams within
our study area. Afforested areas in Europe have also been
found to consistently incite high levels of acidity in soils
and stream water [Gee and Stoner, 1989; Jenkins et al.,
1990; Miles, 1986; Whitehead et al., 1988]. Forests can
have a variable influence on water chemistry depending on
the prevailing climate, underlying geology, catchment size,
successional stage of forest development, forest composi-
tion, and legacy influences of past disturbances, among
others [Harriman and Morrison, 1982; Sullivan, 2000].
Forests generally scavenge wet and dry deposition of
atmospheric pollutants (including, but not limited to S)
and translate these pollutants to watershed soils and the
associated stream reach. Furthermore, forests can take up

base cations and reduce the capacity of soils to buffer
against acidic inputs. However, forested areas in the Appa-
lachian region are generally located at higher elevations
and on ridges where catchments are small and reside on si-
liceous bedrocks [Herlihy et al., 1993]. Therefore, the geo-
graphic locations of forested areas may be coincident with
areas predisposed to having low ANC due to the edaphic
and lithologic setting.

[70] When high-elevation sites were modeled alone, per-
cent coniferous forest cover was the leading variable in the
model, followed by deciduous forest cover. Moreover,
these cover types displayed opposite influences on ANC
(i.e., high coniferous cover was associated with low ANC,
and high deciduous cover was related to high ANC; Figure
S4). This observation is generally consistent with other
works [Cronan et al., 1978; Nihlgård, 1970]. Indeed, high-
elevation catchments dominated by deciduous forest
(�60% cover; threshold value, Figure S4) had mean ANC
of 83.8 meq L�1, compared to �19.8 meq L�1 for catch-
ments with a lesser deciduous component. In our data set
high-elevation deciduous forests were generally located in
larger catchments, with a lower percentage of siliceous par-
ent material, less dry S deposition, and warmer and drier
climates than coniferous forests. Whether coniferous forest
types contributed to low ANC at higher elevations through
acidic foliage deposition, pollutant sequestration, and sub-
sequent acidic throughfall and stemflow [Dunford et al.,
2012; Miles, 1986], or if the environmental setting of co-
niferous forests influenced low ANC remains unclear. It is
plausible that the influences of catchment size, mineral sub-
strate, weathering rates, and dominant vegetation are highly
interactive and change across the study region. The contin-
uous model in our study identified important interactions
among forest cover and lithology, and ANC was higher in
catchments dominated by siliceous lithology when forest
cover was low, compared to well-forested catchments with
similar lithologies (Figure S2).

[71] Although elevation is generally considered a surro-
gate for climate at broad scales, elevation was not explicitly
included as a predictor variable because remotely sensed
climate data are now regionally available at a scale and ac-
curacy sufficient for our application. Predictive modeling is
most robust when predictor variables expected to be
directly linked to the modeled response are used in place of
those that may have indirect effects [Austin, 2002]. For
example, elevation is often included as a predictor in spe-
cies distribution modeling [Austin, 2002], but rarely do spe-
cies respond to elevation alone. Rather, more direct
predictors such as temperature and precipitation, which of-
ten are correlated with elevation, are more directly related
to a species’ distributional limits [Austin, 2002; Elith and
Leathwick, 2009].

[72] Elevation is often used as a predictor in the ANC lit-
erature, where increases in elevation are often associated
with (1) increased S deposition [Lawrence et al., 1999], (2)
higher precipitation [Sullivan et al., 1999], (3) cooler tem-
peratures, (4) higher percent siliceous parent material, (5)
thinner and coarser soils with lower cation exchange
capacity, (6) smaller catchments with steep slopes, and (7)
higher percent forest cover [Herlihy et al., 1998, 1993;
Lynch and Dise, 1985; Sullivan et al., 2007], all of which
lead to decreased surface water ANC [Herlihy et al., 1993;
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Sullivan et al., 2007; Sullivan et al., 2011]. However, it is
not clear how these factors rank in importance in driving
ANC at regional scales.

[73] Our modeling results indicated that elevation was
either uncorrelated or loosely correlated with stream water
ANC (r¼�0.21), total S deposition (r¼ 0.11), percent sili-
ceous lithology (r¼�0.04), soil depth (r¼ 0.06), soil clay
(r¼�0.26), catchment size (r¼�0.09), and forest cover
(r¼�0.01). However, elevation was correlated with some,
but not all, climate variables. These variables included num-
ber of days >32�C (AB90GROW, r¼�0.70), nongrowing
season precipitation levels (r¼ 0.63), number of days with-
out precipitation (NPDAYMAX, r¼�0.63), number of
humid days (VWDAYMAX, r¼ 0.70), nongrowing season
solar insolation (SOLARTOTNG, r¼ 0.61), and nongrow-
ing season gross primary productivity (GPPNG, r¼ 0.60).
Three of these climate variables (NPDAYMAX, VWDAY-
MAX, and AB90GROW) were among the top five variables
in the continuous model in our study and indicated that low-
ANC streams coincided with areas that experience few
precipitation-free days, few dry days, and few days >32�C.
These variables had higher variable importance scores than
other edaphic, topographic, vegetation, and sulfur deposition
variables in the model, suggesting that climate may drive re-
gional stream water acidity.

[74] The importance of identifying climatic correlates of
stream water ANC with our models has implications for
monitoring and continued modeling of future stream water
acid-base chemistry [Ben�cokov�a et al., 2011; Evans, 2005;
Wright et al., 2006]. Climate projections for the southern
Appalachian Mountain region indicate both warmer and
drier (south) and warmer and wetter (north) futures (year
2100 projections) [Hayhoe et al., 2008; Karl et al., 2009;
Solomon, 2007]. ANC modeling results reported here indi-
cate that areas with relatively low precipitation and warm
temperatures have relatively high stream water ANC. A
warmer climate would increase BCw and therefore stream
ANC. Drier conditions would decrease wet S deposition
and leaching losses of base cations from soils. Interactions
from the continuous model (Figure S2) suggest that higher
temperatures and lower precipitation can moderate the
influence of siliceous lithology on reducing stream water
ANC levels. Monitoring ANC over time will be necessary
to better understand these interactions.

[75] Ecosystem responses to longer-term climatic change
are largely unknown due to the potential complexity of
interactions among the changes. Accompanying changes in
temperature, precipitation, and insolation regimes, changes
in overall productivity, vegetative communities, plant
cover, carbon and nutrient uptake by plants, and influences
of disturbances may all affect the acid-base chemistry of
streams within the study domain. Thus, it will be important
to continue to monitor and model ANC. Moreover, new
combinations or changes in the importance of predictors
will likely necessitate water chemistry sampling that more
evenly samples the variability of conditions represented by
the predictors.

[76] Since enactment of the Clean Air Act Amendments
of 1990, levels of S deposition in the eastern United States
have decreased by more than 40% [Baumgardner et al.,
2002]. Ongoing monitoring suggests that reduced deposition
improved stream and lake acid-base chemistry at some loca-

tions [United States Environmental Protection Agency,
2009]. In the current assessment, the amount of S deposited
was an important predictor of ANC, but S deposition was
only included in one model (the continuous model) and was
not included in any other of the models in the analysis.
Instead, other variables related to the surrounding geology,
soils, climate, and vegetation were generally more influential
than the amount of S deposition in the catchment.

[77] Furthermore, the continuous model did not indicate
a monotonic decrease in ANC with increasing levels of S
deposition; rather, nonlinearities in this relation were appa-
rent. Modeled ANC was lowest for intermediate levels of
dry S deposition, pointing to interactions among S and
other predictors. For example, intermediate levels of dry S
deposition typically occurred in montane environments,
where wet deposition was highest, catchment areas were
small, and climate was cool and moist with frequent cloud
cover. These interactions were nonstationary across the
study domain and could not be accounted for using a single
global model.

[78] Nonlinearities may also derive from the rather
coarse resolution of CMAQ modeled dry and wet S deposi-
tion or from CMAQ prediction errors. Considerable uncer-
tainty exists in these layers, but it is difficult to quantify the
extent of these uncertainties as no ‘‘true estimates’’ of dep-
osition exist to test model errors [United States Environ-
mental Protection Agency, 2009].

[79] Another possible explanation for the predicted non-
linear relationship between S deposition and ANC may be
related to the temporal discontinuity between a portion of
the observed ANC data and the modeled CMAQ data.
Because the water chemistry data were taken over a 24
year period and the CMAQ data used to represent dry S
deposition were taken from 2002, the modeled dry S depo-
sition may not accurately represent conditions at the time
of the water chemistry sampling. However, CMAQ data for
2002 likely represent the relative extent to which each
catchment has been exposed to elevated S deposition. Fur-
thermore, base cation depletion of soils has limited the
ANC recovery of the most acid-sensitive streams [Sullivan
et al., 2004, 2011]. Nevertheless, results here indicate that
reductions in S inputs alone may not lead directly to
increases in stream water ANC because interactions with
other driving variables, such as temperature and precipita-
tion, confound simple monotonic interpretation of relations
between acidic S inputs and stream water ANC.

5. Conclusion

[80] Models developed here predict stream water ANC
across the southern Appalachian Mountains. Results suggest
that aquatic biota may be at risk from the deleterious effects
of low ANC (ANC< 100 meq L�1) [Sullivan, 2000] over
approximately one fourth of the stream network. Acid-
sensitive areas have siliceous lithology, cool and moist cli-
mates, and forests with low soil clay and pH levels, and rela-
tively small contributing areas. Our findings suggest that
predicting future ANC will require incorporation of data
from ongoing stream water chemistry monitoring into a
modeling framework capable of quantifying the inherently
nonlinear interactions among relevant biogeochemical and
climatic variables. Continued water chemistry monitoring
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should include previously sampled locations and be
expanded to include undersampled geographic areas and
environments (e.g., areas with high model uncertainty).
Although correlation does not imply causation, the identifi-
cation of several climate variables as key drivers of ANC
suggests that future climate change may influence future
stream acid-base chemistry in unique and complex ways.
The analysis approach taken here can be readily applied in
other regions where adequate coverage of high-resolution,
spatially explicit environmental data is available, and where
stream water quality surveys have been conducted at a rea-
sonable sampling intensity.
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